On a Robin (p,q)-equation with a logistic reaction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Fuzzy Logistic Difference Equation

This paper is concerned with the existence, uniqueness and asymptotic behavior of the positive solutions of a fuzzy Logistic difference equation xn+1 = A+Bxn−1e −xn , n = 0, 1, · · · , where (xn) is a sequence of positive fuzzy number, A,B are positive fuzzy numbers and the initial conditions x−1, x0 are positive fuzzy numbers. Moreover an illustrative example is given to demonstrate the effect...

متن کامل

Degenerate Convection-Diffusion Equation with a Robin boundary condition

We study a Robin boundary problem for degenerate parabolic equation. We suggest a notion of entropy solution and propose a result of existence and uniqueness. Numerical simulations illustrate some aspects of solution behaviour. Monodimensional experiments are presented. Mathematics Subject Classification (2010). Primary 35F31; Secondary 00A69.

متن کامل

On the periodic logistic equation

We show that the p-periodic logistic equation xn+1 = μn mod pxn(1 − xn) has cycles (periodic solutions) of minimal periods 1, p, 2p, 3p, .... Then we extend Singer’s theorem to periodic difference equations, and use it to show the p-periodic logistic equation has at most p stable cycles. Also, we present computational methods investigating the stable cycles in case p = 2 and 3.

متن کامل

FUZZY LOGISTIC DIFFERENCE EQUATION

In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Opuscula Mathematica

سال: 2019

ISSN: 1232-9274

DOI: 10.7494/opmath.2019.39.2.227